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Abstract

A study was performed to measure the curing stresses of several epoxy systems using the bimaterial beam approach. In addition, the stress

relaxation pro®le of the adhesive bonded to the metallic strip (bimaterial strip) was compared to the relaxation pro®le of the bulk adhesive. It

was found that the shape of the relaxation curves was consistent for both samples, but that the magnitude of the two curves differed. It is

argued that the difference between the curves is a result of curing stress and that the long-term effective modulus as measured from the

bonded adhesive should be used to establish the curing stress. Use of an improper modulus is one possible cause of confusion regarding the

determination of curing stresses as reported in the literature. q 2001 Thiokol Propulsion. Published by Elsevier Science Ltd. All rights

reserved.
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1. Introduction

The use of adhesives as engineering materials requires an

understanding of their mechanical properties. This includes

knowledge of the nature and magnitude of curing stresses

formed when the material is used in an adhesive joint. These

stresses can superimpose themselves on externally applied

stresses and thus cause premature failure of the adhesive

bonds [1]. Cure stresses can also negatively impact the frac-

ture properties of the adhesive [2]. Factors that will in¯u-

ence the magnitude of the stresses include volume changes

during curing, geometry of the constraining hardware,

curing time and temperature, material properties of the

system, mechanical deformation, and dimensional changes

resulting from thermal ¯uctuations [3±5].

Curing stresses can result from volume changes that

occur during the polymerization process and will depend

on the chemical nature of the material and the curing proce-

dure [6]. The adhesive can go through two main transitions

during the cure, gelation and vitri®cation. Gelation corre-

sponds to the formation of an in®nite network. Vitri®cation

occurs when the glass transition temperature, Tg, of the

adhesive reaches the cure temperature. If the material is

isothermally cured above the ultimate glass transition

temperature, only gelation will occur. When the material

is cured below the ultimate glass transition temperature, it

will ®rst gelate and then vitrify. The gelation process results

in an equilibrium elastic modulus, whereas vitri®cation is

associated with the transition from a rubbery modulus to a

glassy modulus [7]. The change in elastic modulus asso-

ciated with gelation and vitri®cation is the dominating

factor in the occurrence of the contractive stress rather

than just the volume contraction itself [8]. When the adhe-

sive is cured above the ultimate glass transition temperature,

curing stresses resulting from volume changes are mini-

mized because of the low magnitude of the rubbery modulus

[9,10].

Curing stresses also result as the adhesive joint is cooled

from the cure temperature to ambient temperature. Thermal

stresses occurring from cooling arise from differential ther-

mal expansions in the joint. The magnitude of these stresses

will depend on the material constants of the adhesive includ-

ing the thermal expansion coef®cient, Poisson's ratio, and

elastic modulus [4]. These constants depend on the extent of

cure, test temperature, and time scale at which they are

evaluated. The magnitude of the curing stresses is also

affected by how constrained the adhesive is in the joint. If

the material is subjected to a one-dimensional constraint, the

resulting stress will scale linearly with the dimensional

change resulting from thermal expansion and chemical

shrinkage. This trend is true if the material behaves accord-

ing to the following assumptions: material isotropy, incre-

mental linear elastic behavior, history-dependent elastic

coef®cients, and no viscoelastic behavior. The curing stres-

ses under biaxial constraints will be larger by a factor of
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1=�1 2 y� where y is Poisson's ratio. The curing stresses for

the three-dimensionally constrained system will increase

over the uniaxial case by a factor of 1=�1 2 2y�: The effect

of the constraining geometry can be examined by consider-

ing an adhesive that is constrained in three-dimensions and

is cured above its ultimate glass transition temperature. For

this case, the material exhibits elastomeric-like behavior and

Poisson's ratio approaches a value of 1/2. The denominator

in 1=�1 2 2y� approaches zero with the result of a large

induced stress for any process that results in shrinkage [3].

From an engineering approach, measuring the stress asso-

ciated with the curing process is desirable. A number of

experimental approaches have been used to make these

measurements and include wafer de¯ection [11], photo-

elasticity [12], strain gage [5,13,14], bimaterial strip

[1,14±17,19], impulse viscoelasticity [18], and cantilever

methods [10,20]. In addition, mathematical methods

have been used to estimate curing stresses in adhesive

joints. On the practical front, most of these analyses are

elastic and make no allowance for stress relaxation of the

adhesive [20].

Of particular interest to this work is the bimaterial strip

approach. This method is similar to the analysis of the bime-

tallic strip developed by Timoshenko [21]. If a layer of

adhesive bonded to a metallic strip contracts or expands,

the strip will curve in response. The extent of curvature is

a measure of the stress state in the adhesive if linear limits

are maintained. Inoue and Kobatake also developed a rela-

tion to describe the residual stress for a composite strip as a

function of the radius of curvature [22]. Their derivation

differed from that of Timoshenko in that each ®lament in

the bimaterial strip is assumed to be cemented tightly

instead of only at the ends.

In this work, we utilize a bimaterial strip along with the

relation of Inoue and Kobatake to measure the curing stress

as a function of an equilibrium modulus. Afterwards, a

dynamic mechanical analyzer (DMA) is used to establish

the stress relaxation pro®le of the bimaterial strip. The

results are compared to the relaxation pro®le of the bulk

adhesive. Finally, emphasis is placed on the role of the

measured modulus and how it relates to the curing stress.

2. Experimental

2.1. Materials

The epoxy resins used in the study were TIGA 321w

manufactured by Resin Technology Group (RTG) and EA

946w manufactured by Dexter-Hysol. In addition, a simple

epoxy system of 34 parts by weight Eponw 828, 55 parts

by weight Versamidw 140, and 4 parts by weight TS-720

Cab-O-Silw was considered.

2.2. Preparation of bimaterial strips

The epoxies were vacuum mixed and then coated on a brass

strip having the dimensions of 5.79 £ 0.635 £ 0.013 cm.

The adhesive thickness was controlled to 0.005 cm. After

coating with the adhesive, the bimaterial strip was placed at

418C for 48 h and then rapidly cooled to 228C for the TIGA

321 and EA 946 adhesives. This cure cycle was chosen

because it duplicates the cure schedule of these adhesives

as they are used on the nozzle of the Space Shuttle booster

motor produced by Thiokol Propulsion Group. The Eponw

828 1 Versamidw 140 epoxy was cured at 1218C for 15 h

and then rapidly cooled to 228C.

2.3. Curing stress

After the bimaterial strip was cured and cooled to ambient

temperature, it began to curve. The de¯ection of the center

of the strip, d , was optically measured and related to the

radius of curvature, r , by the following relation

d � l 2

8r
�1�

where l is the length of the bimaterial strip and it is assumed

that d ! r:

2.4. Stress relaxation

Recently, a DMA was used to measure the stress-free

temperature of a bimaterial strip [23]. In this work, a Rheo-

metrics RSA II DMA was used to measure the stress relaxa-

tion pro®le of both the bimaterial strip and bulk adhesive

using a 3-point bending setup. The bimaterial strip is placed

with the concave surface facing up and the loading arm is

placed at the center of the strip. During testing, a step strain

of 0.1% was applied to the sample. The choice of 0.1%

strain was well within the linear viscoelastic regime for

these samples. After application of the step strain, the load-

ing arm was able to monitor the applied force as a function

of time. This stress relaxation test was repeated with the

concave surface of the bimaterial strip facing down and

no difference in the relaxation pro®le was observed. A simi-

lar approach allowed the stress relaxation pro®le to be eval-

uated for the bulk adhesive molded into thin strips. The

DMA was equipped with an oven that allowed these

measurements to be carried out over a relatively wide

temperature range.

2.5. Coef®cient of thermal expansion

The coef®cient of thermal expansion was evaluated on the

bulk adhesive using a Perkin±Elmer Thermal Mechanical

Analyzer (TMA) 7. The instrument was out®tted with a ¯at

tipped expansion probe. Samples were tested from 275 to

1508C at 108C/min.

2.5.1. Glass transition temperature

The onset Tg of the adhesive was measured using a

Mettler-Toledo differential scanning calorimeter (DSC)

821. Samples were tested from 275 to 1508C at 108C/min.
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3. Results and discussion

3.1. Stress relaxation

In a typical 3-point bending test, the relation between the

de¯ection at the center of the beam, d , and the applied load,

P, is

d � PL3

48EI
�2�

where L is the length of the support span, E is Young's

modulus of the beam, and I is the moment of inertia for

the beam [24]. In the case of the bimaterial strip, the

measured modulus as given by Eq. (2) will depend on the

moduli of both the adhesive and the metallic strip. If

the effective modulus of the bimaterial strip is viscoelastic,

Eq. (2) changes. For a stress relaxation test, the displace-

ment term will remain constant, but the load becomes a

function of time, as does the ¯exural rigidity term, EI.

The ¯exural rigidity of the bimaterial strip depends on the

viscoelastic behavior of both the brass shim and adhesive.

For the experimental times considered, the modulus of the

brass shim can be assumed constant with the time-depen-

dent contribution to the measured modulus coming solely

from the adhesive. The moment of inertia will in turn

depend upon the neutral axis plane of the composite strip,

which is also changing with time. For a stress relaxation test,

Eq. (2) becomes

EI�t� � P�t�L3

48d
�3�

where P�t� and EI�t� are the applied load and ¯exural

rigidity as a function of time, respectively.

The change in ¯exural rigidity of the composite is related

to the individual contributions from both the brass and

adhesive. Fig. 1 shows the cross-section of the bimaterial

beam. The x-coordinate direction is perpendicular to the

plane of the paper and the y-coordinate is de®ned as positive

towards the bottom of the page. For a beam made of two

materials, the bending moment, M, is

M �
Z

A
sxAy dA 1

Z
B
sxBy dA �4�

where sxA is the stress of the adhesive acting in the x-direc-

tion, sxB is the stress of the brass shim acting in the x-

direction, y is the distance from the neutral axis plane, and

dA is the differential change in area. The subscripts A and B

will denote properties relating to the adhesive and brass,

respectively. Making use of Hookes law, s � Ee; and the

strain in the x-direction, ex � y=r; Eq. (4) becomes

M � 1

r
EA

Z
A

y2 dA 1 EB

Z
B

y2 dA

� �
�5�

If the observed moment of the bimaterial beam, M � EI=r;
is used, Eq. (5) becomes

EI � EAIA 1 EBIB �6�
where I � R

y2 dA:Using the parallel axis theorem gives

IA � 1

12
wt3

A 1 tAw c 2
1

2
tA

� �2

IB � 1

12
wt3

B 1 tBw tA 1
1

2
tB 2 c

� �2

where c is the distance from the top of the section to the

neutral axis, w is the width of the beam, tA is the thickness of

the adhesive, and tB is the thickness of the brass.

It is also noted that there are no external forces acting on

the strip from the x-direction, therefore,X
Fx � 0)

Z
A
sxA dA 1

Z
B
sxB dA � 0

and remembering that sxA � EAy=r and sxB � EBy=r; then

the summation of forces becomes

EA

Z
A

y dA 1 EB

Z
B

y dA � 0 �7�

To perform this integral, Fig. 1 is divided into three

centroids. The ®rst is the area from the top of the section

to the neutral axis. The second is the area from the neutral

axis to the adhesive and brass interface. The third is the area

of the brass shim. Eq. (7) then becomes

EAw 2
1

2
c2 1

1

2
�tA 2 c�2

� �
1 EBtBw tA 2 c 1

1

2
tB

� �
� 0

�8�
Eq. (8) can be solved for EA and then substituted into Eq. (6).

This along with the use of the ¯exural rigidity of the compo-

site beam as given by Eq. (3) allows the relaxation modulus

of the bonded adhesive to be measured.
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3.2. Master stress relaxation curve

If a relaxation spectrum of the adhesive is measured

at different temperatures, a master curve can be

constructed by shifting the experimental logarithmic

curves along the time axis to obtain superposition.

The distance shifted represents the logarithm of the

shift factor, aT: Williams, Landel, and Ferry proposed

an empirical equation for the temperature dependence of

the shift factor [25]. This relation is

log aT �
2C1�T 2 Tg�
C2 1 T 2 Tg

�9�

where T is the temperature of interest, C1 and C2 are

experimentally determined constants. In addition, a

small correction is required in the form of a vertical

shift due to temperature variations and changes in

volume resulting from temperature changes [26]. The

correction factor is

E�Tg; t� �
r�Tg�Tg

r�T�T E�T ; t=aT� �10�

where E�Tg; t� is the shifted modulus, r�Tg� is the

density measured at Tg; r�T� is the density at tempera-

ture, T, E�T ; t=aT� is the modulus measured at tempera-

ture, T, and shifted along the time axis by aT: Since the

contribution from the mass to the density does not

change with temperature, Eq. (10) may be rewritten as

E�Tg; t� �
V�T�Tg

V�Tg�T E�T ; t=aT� �11�

where V�T� is the volume of the body at temperature, T,

and V�Tg� is the volume of the body at the glass transi-

tion temperature.

It has been observed that the length of an isotropic body

increases with temperature over a fairly broad temperature
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Fig. 2. Master stress relaxation curve for TIGA 321 bonded to a brass shim as measured by 3-point bending test on TMA.
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range as [27]

ln li�T� � ln li�T0�1 a�T 2 T0� �12�
where li�T� is the length of the body at temperature, T, li�T0�
is the length of the body at some reference temperature, T0;

and a is the linear coef®cient of thermal expansion. Also,

indicial notation is used. Since V � l1l2l3; then Eq. (11)

when used in conjunction with Eq. (12) becomes

E�Tg; t� � e3a�T2Tg� Tg

T
E�T ; t=aT� �13�

Eq. (13) can be used to shift the relaxation curves to make a

master curve. Fig. 2 illustrates a master relaxation curve for

TIGA 321 bonded to a brass shim.

3.3. Relaxation curve for bulk adhesive versus bonded

adhesive

Figs. 3±5 show the relaxation curves for EA 946, TIGA

321, and Epon 828 1 Versamid 140 for both the bulk and

bonded resin. The most noticeable features are that the

relaxation moduli for the bonded adhesives are of greater

magnitude than for the bulk adhesive and are generally

separated by a constant. This phenomenon has been

observed before when an adhesive modulus has been

measured in butt joints [28]. The measured or apparent

modulus of the adhesive is of greater magnitude than that

of the unbonded material. This is because the adhesive

is constrained and the substrates are more rigid than the

adhesive [1].

The relaxation curves shown in Figs. 3 and 4 do not show

a proper long-term equilibrium modulus. This is because

both adhesives are cured at 418C for 48 h which does not

allow either adhesive to completely cure. To prevent addi-

tional chemical aging during the stress relaxation test, the

test temperatures were restricted to slightly above the cure

temperature. A true equilibrium modulus is not reached

during the stress relaxation test at the chosen test tempera-

tures but this value will not differ signi®cantly from the

measured long-term modulus. The adhesive used to gener-

ate Fig. 5 was cured above its ultimate glass transition

temperature (878C). This allowed higher test temperatures

to be used and a more proper equilibrium modulus to be

measured.

For the curves shown in Figs. 3±5, the effect of the curing

stress on the relaxation spectra is of particular interest.

Kubat and Rigdahl noted, at conditions of low stress and/

or temperature, the following relation for both metals and

polymers in a stress relaxation test [29±33]

s�t�2 si � K�t 1 a�2n �14�
where s�t� is the time-dependent measured stress, s i is the

internal stress and is assumed independent of time, t is

the time, K, a, and n are constants. The term on the right

of the equal sign is a decaying power law that yields a

relaxation spectrum. The terms on the left indicate that the

resulting relaxation curve is shifted vertically by a constant,

which in this case they ascribe to the internal stress. In

polymers, relaxation phenomena are often interpreted in
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terms of relaxation time spectra, changes in free volume,

etc. That is to say in terms of approaches where internal

stress does not appear explicitly. However if the internal

stress is included in these interpretations, special care

must be taken on how this internal stress is described.

White indicates that the internal stress as written in

Eq. (14) can refer to two quite different physical phenomena

[34]. One type is a result of normal curing stresses found in

thermosets. The other type is often used in the ®eld of

physical metallurgy to indicate a resistance to deformation.

Polymers can behave in a phenomenologically similar

manner to that of metals though the responsible mechanisms

are almost certainly different. The two types of internal

stress are interactive and depend upon the processing

conditions.

Normally, stress relaxation can be written as

s�t� � E�t�eo �15�
where E�t� is the time-dependent relaxation modulus and eo

is the applied strain. Instead an effective relaxation modulus

as a function of time, Eeff�t�; can be de®ned for a bimaterial

strip as

Eeff�t� � f �s i�Ebulk�t� �16�
where f �si� is a time-independent constant that depends at a

minimum on the internal stress of the material and Ebulk is

the relaxation modulus of the bulk adhesive. Eq. (15) may

be rewritten as

log seff�t� � log f �si� eo 1 log Ebulk�t�eo �17�
where seff�t� is the effective measured stress for the

composite beam as a function of time. The log f �si�eo

term is time-independent and will shift the relaxation

spectrum by a constant. This behavior is seen in Fig. 3

where the lower curve was generated from the bulk

adhesive and the upper curve was measured for the adhesive

in a stressed state. Similar behavior is seen in Figs. 4 and 5.

If both curves in Fig. 3 are normalized by the initial

measured modulus, they can be superimposed over each

other as seen in Fig. 6. This indicates that a constant is all

that differentiates the two different curves.

When evaluating the engineering properties of the adhe-

sive, it is important to consider whether the adhesive is the

same in bulk form as when bonded between substrates.

Curing stresses are present in greater magnitude when the

adhesive is cured in a constrained geometry. This in turn can

in¯uence the mechanical properties of the bulk adhesive

compared to the bonded material [2]. This behavior was

observed by Knollman, who measured a change in shear

modulus as the distance from the adhesive/adherend inter-

face increased [35].

3.4. Measurement of curing stress

The stress associated with the curing process, s i; can be

measured for a bimaterial strip using the following relation

derived by Inoue and Kobatake [22]

si � EBh3
B

12hA

1

r�hA 1 hB� F�m; n� �18�

where EB is Young's modulus of the brass shim and is equal

to 110 GPa; hA the thickness of the adhesive; hB the thick-

ness of the brass shim; m � EA=EB; n � hA=hB; and F�m; n�
a structural factor given by

F�m; n�

� �1 2 mn2�3�1 2 m�1 �mn�n 1 2�1 1�3 1 m�mn2 1 2n 1 1�3
�1 1 mn�3

�19�
In Eq. (18), the dependence of the internal stress on EA is

given by the function F�m; n�: As derived, EA is assigned to

the instantaneous modulus and does not allow for any stress

relaxation. Under experimental conditions, the measured

equilibrium stress will depend on an equilibrium modulus

not an instantaneous one. The choice of the adhesive modu-

lus value to be used strongly impacts the resulting measured

stress. Examination of Figs. 3 and 4 show that four possible

moduli for a given adhesive can be substituted into Eq. (19).

Two of the possible choices are the instantaneous moduli for

the bulk and bonded adhesive. The other two choices are the

long-term moduli for the bulk and bonded adhesive. Fig. 7

shows log F�m; n� for the EA 946 adhesive versus the varia-

tion in adhesive to substrate thickness �hA=hB� for the four

different moduli. When the substrate is much thicker than

the adhesive (i.e. n! 0�; the differences in the four types of

adhesive moduli do little to affect F�m; n�: However as n

approaches the ratio of adhesive to substrate thickness used

in this work �n � 14�; the impact of the modulus choice

becomes signi®cant. The best choice for modulus is one

of the long-term variety. More speci®cally, the effective

long-term modulus should be used because this is an accu-

rate measure of the bimaterial beam's resistance to defor-

mation. The other measures for the moduli shown in Fig. 7
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give an estimate of the possible error if the wrong

modulus is chosen. Using an equilibrium effective

modulus for EA 946 of 8.9 MPa in Eq. (18) gives a

curing stress measure of 0.75 MPa for EA 946. If the

long-term modulus for the bulk adhesive is chosen, the

calculated curing stress would be underestimated by

25.5%. Either of the short-term moduli would over-

estimate the curing stress by several orders of magni-

tude. Using the long term effective moduli, curing

stresses of 1.1 and 8.8 MPa were established for

TIGA 321 and Epon 828 1 Versamid 140, respectively.

It has been pointed out that for a similar chemical

system, different results for the curing stress have been

obtained by different researchers [13]. The choice of

modulus is one possible source of confusion. In some

instances, the instantaneous modulus for the bulk mate-

rial has been used [7,14]. If no other corrections are

used, this will lead to an overestimation of the residual

stress. In other circumstances, an effective modulus

measurement of the adhesive in the test geometry was

performed. But again an instantaneous modulus was

measured, leading to a possible overestimation of the

curing stress [1,23]. Finally, the contribution of the

adhesive to the stiffness has often been neglected

under the assumption that the adhesive layer thickness

and modulus are much less than that of the metallic

substrate [7±9,15,17,36]. These assumptions are reason-

able as long as the conditions are met. But in checking

the assumptions, the effective long-term modulus should

be used, especially as the adhesive layer thickness

increases.

4. Conclusions

From the presented data, the following conclusions were

drawn:

1. The effective modulus of an adhesive in a bimaterial strip

will be greater than for the bulk adhesive and may depend

on the extent of curing stress.

2. The long-term effective modulus is the most accurate

measure for determining the curing stress for a bimaterial

strip.

3. Confusion in the literature regarding the curing stress

may have arisen from incorrect measures of the adhesive

modulus.
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